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Singularities in the solution of certain problems in the theory of elasticity of the contact problem type 

or problems concerning cracks) are analytically modelled in a formulation of variational problems for 

boundary functionals using a singular solution of the Lame equation. Numerical modelling makes use 

of an uncoupled variational formulation of the boundary-element method. 

Unlike the case when a singularity in the solution of a boundary-value problem follows 
naturally from its analytic solution, as occurs in the solutions of planar problems in the theory 
of elasticity using the apparatus of the theory of functions of a complex variable (examples are 
the quite extensive class of problems with singularities of the type of a cavity, notch, cusp, etc. 
[l, 21, contact problems for a punch with a rectangular base [3, 41 and problems on cracks [4]), 
the modelling of a singularity in a solution involves the construction of a model in which, to 
realize the singularity, a certain analytic or numerical procedure is incorporated (for example, 
the solution in series is supplemented with an expansion in a series for a g-function which is 
concentrated at the singular point or, in the case of a finite-element approximation of the 
solution, “singular” elements are made use of in the neighbourhood of the singular point). 
There are a large number of recent publications dealing with the solution of problems in the 
theory of elasticity with singularities which make use of the apparatus of boundary integral 
equations and numerical approximations of the type of finite-element approximations, the 
apparatus of boundary integral equations and asymptotic expansions in the neighbourho~ of 
singular points, etc. 

In this paper, it is proposed that a numerical-analytic algorithm be used to model a singular- 
ity in a solution on the boundary of certain (planar and spatial) problems in the theory of 
elasticity. This algorithm leads to the implementation of the proposed [5-81 variational method 
of boundary elements (VMBE) in an uncoupled formulation [9]: the displacements and 
stresses are disconnected by way of certain relationships on the boundary which enable one to 
adopt an independent boundary-element approximation for them (of a higher order for the 
stresses in the neighbourhood of the singular point). Here, these characteristic relationships 
are satisfied as coupling equations, using Lagrange multipliers in the procedure for solving the 
double variational problem. 

1. The VMBE algorithm [S] reduces a boundary-value problem on a boundary to the form of 
the equivalent problem of minimizing a boundary functional in the solutions of a homo- 
geneous Lame equation at the points of a domain. If the initial boundary-value problem is 
irregular in the sense that the boundary has a singular point (the tip of a crack, for example), 
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then Betti’s formula [lo] (or Green’s formula, if one is dealing with an abstract second-order 
elliptic boundary-value problem) is required which is used in reducing the problem to the 
boundary. With reference to the analysis carried out in [ll, p. 231 for domains with a boundary 
which is continuous in the Lipshits sense, it may be asserted that, if an outward normal to the 
boundary exists “almost everywhere” (with the exception of a finite boundary set of measure 
zero, that is, the singular point or line) and the trace operator y : WI(G)%p + “~cp E W2x(s> also 
exists “almost everywhere”, then Betti’s formula holds and a formulation of a variational prob- 
lem for the boundary functional is possible. 

It is proposed that a singular solution of the Lame equation should be used for the analytic 
modelling of a singularity. The idea lies in the fact that the result of the presence of a singular 
point is to be considered as a stress field which is generated by the action of a unit force 
applied at the singular point. Then, the normal component g”‘(y) of the specified stresses at 
the boundary points y E S (on a crack contour, for example) will be represented as a sum of a 
regular component g, (“) of the stresses specified on the boundary (on a crack contour) ~(‘~~(y) 
(i, j=l, . . . . m) and the singular component gj”’ = T(“) (y, y,,) (y,, E S is the singular point of the 
boundary) which, in essence, are the singular kernels of the vector potential of a double layer 
[12, p. 2191. Hence, the singularity of a function of the stresses specified on a boundary 

g(v) = gT)(&) + T(u) (1.1) 

is responsible for the irregularity of the variational problem for the boundary functional 

FEi; F(u), F(u) = j uP(u)ds - 2j ug%s (1.2) 
s s 

D(F)= (II: Au(x)=O, XE Cl 

where D is the set of permissible displacement vectors, A is the vector operator of the theory 
of elasticity and t(“)(u) is the vector of the required stresses at points on the boundary S which 
bounds the domain G. 

Because of the irregularity of problem (1.2), the question arises as to the existence of a 
solution. It is sufficient to establish the boundedness of the linear functional I(u) = I, uT%s as 
a singular integral with a density u(y) E L,(S), y E S and with a singular kernel T@l(y, y,,), y, 
y,, E S which has a singularity O(r;‘), r0 = I y - y, I. We know [12] that, subject to certain condi- 
tions on the characteristic of the above-mentioned integral (which have no effect on the 
formulation of the problem under consideration), the singular integral operator which is 
generated by it is bounded in L*(s) [12, p. 1271. The existence of a solution of problem (1.2) 
then follows from the fact that a second problem which is equivalent to it [8] has a solution 

WI. 
In connection with the question under discussion regarding the existence of a solution of the 

variational problem (1.2) which is associated with the problem of proving the convergence of 
the solution of the approximating (discrete) variational problem, it should be noted that the 
question of the existence of the discrete variational problem itself is of great significance. For 
example, in the case of a linear boundary element approximation of the crack contour (circular 
or elliptic in plan view), we obtain a polygonal boundary which is discontinuous in the Lipshits 
sense [ll, p. 951; the concept of multiple nodes [13, p. 1961 enables one to “isolate” the singular 
point, that is, the crack tip and, under the conditions of conformal finite-element methods [ll] 
(the boundary-element matching conditions are satisfied such that the global interpolation 
function which approximates the solution is continuous at all points of the discrete boundary), 
a solution of the corresponding discrete variational problem always exists [ll, p. 261. In this 
case, the grid point values at the multiple grid points of the singular functions T”” which 
simulate the stress field in the neighbourhood of the tip of a crack are finite in the case of the 
formation of the discrete functional F*(u,,,) (see below). 

If II,, is a solution of (1.2) then 4, satisfies the boundary variational equation 
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J “P)( II, )ds - J ug(“)ds = 0, vu E D(F) (1.3) 
s S 

The VMBE algorithm reduces to an approximation and the solution of Eq. (1.3). 

2 As has already been mentioned, numerical modelling of a singularity (the stress field in 
the neighbourhood of the crack tip, for example) makes use of an uncoupled formulation of 
VMBE [9] which must be modified due to the specific features of the solutions of problems in 
the theory of elasticity with singularities: the displacement field is regular in the neighbour- 
hood of a singular point (the crack tip) while the stress field is singular (for example, Griffiths 
solution, etc.), whereupon the governing relationships are not satisfied locally. In such a case it 
is natural to employ a locally uncoupled formulation of VMBE in the approximation of these 
solutions: the governing relationships are satisfied as coupling equations in the variational 
problem on parts of the boundary (in the neighbourhood of the singular point) while coupled 
approximations are used on the remaining boundary. The algorithm is correspondingly 
modified 191, and the variational principle remains true: regardless of the fact whether the 
coupling equations are specified on the whole of the boundary or on parts of it, in a state of 
equilibrium the energy of the surface stresses has one and the same value for the correspond- 
ing displacements. What has been said is expressed by the duality principle which holds in the 
case of a modified Lagrangian (see [9, formula 1.4]) 

t!.&,t”‘,A) = F(U)- J A[t’“’ - t’“‘(u)]ds (2.1) 
%I 

Here F(u) is the functional from (1.2) and the second term is the integral expression of the 
governing relationships in the case of the surface stress vector 6’) on a segment of the bound- 
ary S, in the neighbourhood of the singular point. Here, the Lagrange multipliers h have the 
meaning of displacements [9] and are subsequently identified with them. The system of 
variational equations to the solution of which the solution of the dual problem for .& leads [9], 
is written in the form 

21 vP’(u)ds - 21 vg”‘dS + J W’(v)& = 0 (2.2) 
s s 

f p[t”’ - P’(“);s = 0 (2.3) 
so 

t/v, p E D(F) (see (1.2)), and, here, the second of them corresponds to the coupling equation. 
First, without using the approximation of boundary-element methods, we will analyse the 

solutions of Eqs (2.2) and (2.3) with approximations of the Bubnov-Galerkin type (the VMBE 
approximations proposed in [9] are in essence of this type). Let there be the following systems 
of coordinate functions: a complete system of vector functions {cp,), that is, of homogeneous 
solutions of the equations of the theory of elasticity and a system of sufficiently smooth vector 
functions (Q,) defined at the point S,. Let us consider the approximations for the required 
displacement and stress vectors 

Uk = $ lJibpi, ty - 
i=l 

- ,$, TiJtj (2.4) 

where Ui, Ti are the required coefficients. In Eq. (2.2), we identify A and u and cr. with v in 
(2.3). The equations will obviously be satisfied for all vector functions v of the form vk = I;V,‘pi 
(i=l, . . . . k), where V, are arbitrary, and, then, from (2.2) and (2.3) using an expansion of the 
form gr) = ZZQi’pi (i = 1, . . . , k), for the required vector g@‘, we obtain the system of resolving 
equations in U, and ?;. 

Obtaining a numerical solution is associated with the question of the solvability of the sub- 
system of equations in Vi which is obtained from Eq. (2.2). The coefficients ?; are determined 
after the U, have been found from the subsystem obtained from Eq. (2.3) (this follows from 
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the fact that the unknown 6” only occur in the second equation of system (2.2), (2.3)). 
The non-singular character of the matrix of the system holds if the spectrum of the matrix 

does not contain a zero eigenvalue. 

In order to prove this, we employ spectral analysis of the integro-differential forms which appear in Eq. 
(2.2) (when A = u). We reduce the equation to an operator form using the apparatus of Sobolev spaces 
(with a fractional index) of vector functions defined at points of S (S is taken as being sufficiently smooth) 
and assuming that the coupling equations are specified on the whole of the boundary S, that is, S, =S. We 
then return to the case being considered when S, c S. The above-mentioned spaces W:(G), W2%(S) are 
spaces of the tracks on 5’ of solutions from the Sobolev class W:(G) of variational problems of the type of 

(1.2). We shall denote scalar products in these spaces by (., .),,,,, and (., ,)_l,Z,s respectively, and (., .) is 

the duality relation in Wzg(S)x Wix(S). 
Certain constructions from [14, 151 are subsequently used. It should be taken into account that, gener 

ally speaking, the domains of definition of the bilinear forms (v, t@‘)(u)> and (A, t(“(v)> (when A = u) are 
different: the first of them, by virtue of the equality (which follows from Betti’s formula if Au = 0 in G , 
see (1.2)) 

1 vt(“)(u)ds = 2 J W(u,v)dG 
S G 

is symmetric and positive definite when the conditions for the unique solvability of problem (1.2) [lo] 

J WIG= J rotudG=O (2.5) 
G G 

are satisfied and the corresponding space of the tracks Wix(S) forms [14] a subspace in W2%(S). The 

second form is defined in the whole of the space W,‘x(S). Hence, in every case, the expression (h, t’“‘(v)} 

(when A = u) has a meaning each time the expression (v , t(“)(u)) has a meaning. Next, in the case of the 
first form, the following representation holds [14] ( on the basis of the Riesz theorem on the general 
form of a linear continuous functional in Hilbert space): (t(‘)(u), v)= [u, v]~,~,~ = (Tu, v)~,~ Vv E W;“(S), 

where [...11,2.sr (...),., are scalar products in Wix(S), h(S) respectively and T is a self-adjoint operator in 
WtK(S). In the case of the second form, by virtue of the generalized Schwartz inequality 1 (u, t(‘)(v))1 S 

IlUll 112,Ji t(“)(v) L,s, the alternative representations 

{“,t(“)(“)) = {u,T~*t(“)(v~) g,s vu E wp (8 

(u,t”‘(v)> = (Tou,t’“‘W_ j@ VP(v) E W;“(S) 

hold where To is the canonical isometry of W:(S) in Wzmx(S) which is determined (according to the 

Riesz theorem mentioned above) by the relationship (u, v)~,~,~ =(T,u, v),,, =(Tp, T,v)_,,,, vu, 
v E W;x(S) and is a completely continuous operator. From this, using the second of the representations 
when t(‘)(v) = Tov, we obtain (II, t(‘)(v)) = (Tau, v),, Vv E Wzx(S). 

It remains to represent the linear continuous functional (g”‘, v) (when g’“’ E WzTx(S) in the form 

(g’“‘v) = (0,~) o,s, QE W2-yz(S}, VVE W?(S). 

As a result, by summing the results which have been obtained, Eq. (2.2) is reduced to an operator 
equation. From the point of view of spectral analysis, the result obtained reduces to the use of the well- 
known Weyl theorem (see (161, for example) on the preservation of a limiting spectrum of a self-adjoint 
operator when it is perturbed by a completely continuous self-adjoint operator. Actually, the limiting 

spectrum of a self-adjoint bounded operator T (II Tu Il_l,z,sd c!! u lll,aS, c>O (see [14]) is contained in a 

segment [co, IITil_,,,.,l, 1 w lere c0 > 0 is a constant from the condition of positive definiteness 1141. By 
virtue of the above theorem due to Weyl, the limiting spectrum of an operator T+ To is also contained in 
the indicated segment. Consequently, zero does not belong to the spectrum of this operator and, corres- 
pondingly, the matrix generated by it in the approximations {u,) is non-singular, which it was required to 
prove. 
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As has already been noted, after determining the coefficients Vi (i=l, . . . , k), the 
coefficients q (j= 1, . . . , n) (see (2.4)) are determined from the subsystem obtained from Eq. 
(2.3), the matrix of which is formed from coefficients of the form Jq,~l,ds (I = 1, . . . , k; 
j=l, * . . , n) and its non-singularity can be ensured by the choice of the approximating systems 
of functions (see (2.4)). Returning to the case under consideration when S,, cS, we note that 
the calculations carried out for the bilinear form (h, t@“(v)> (when h = u) also hold in the case 
of its contraction on S,. Here, account is taken of the fact that II v Ill,Z,s,~ II v II1,Z,s Vv E WZX(S) 
and the sign of the equality holds if Y Is,s,= 0. 

The solutions of system (2.2), (2.3) can be analysed. Using (2.4) for each i ~11, k] and 
j E [l, n] we obtain from Eqs (2.2) and (2.3) 

r/i = QiUi,(bi, + by)-‘, Ti = Ujb~(ciq)-’ 

where the coefficients a,, bg (i, E= 1, . . . , k) are defined in terms of integrals with over S of 
products of the functions vi, cp (and their derivatives), while the coefficients bi, cz (i, I= 1, . , . 
,k; j=l, . . . . n) are defined in terms of integrals over S,. The connectivity of the solutions in 
terms of the coefficient @, which is the result of the realization of the coupling equation (2.3) 
at the points S,, is obvious and, here, if bi = 0 (So = 0 in the case when there is no singular 
point), then the solution ui = Ui(pi, Ui = Q,u&,;’ (i, I = 1, . . . , k) is a “Ritz” solution of a regular 
second problem in the theory of elasticity. 

We note that approximations, similar to (2.4) have been considered previously [17, 181 in 
the realization of duality algorithms for solving problems involving the minimization of gen- 
eralized Trefftz functionals of second-order elliptic boundary-value problems, It was establish- 
ed that they converge to the exact solution of the variational problem. 

3. Changing to the finite-element methods approximations, let us describe the VMBE 
algorithm (which is similar to the algorithm described in [S]). In the case of the coupled 
approximation, the displacement field at the points of a boundary element (BE) is interpolated 
using the grid point values. This is “local interpolation”. The global interpolation function at 
the points of a discrete boundary is constructed taking account of the condition for the 
matching of the boundary elements. The grid point values are equal at the common grid points 
of adjacent elements which corresponds to the conformal version of finite-element methods 
[ll]. The stress field is a derivative of the displacement field. The set D (see (1.2)) is approxi- 
mated by a sequence of discrete boundary potentials with a density in the form of interpolation 
functions, the grid point values of which are determined from a finite dimensional variational 
equation (from the approximating equation (1.3)) which is transformed into a system of 
discrete boundary equations (DBE). 

Let us now consider a scheme for realizing a locally uncoupled formulation of VMBE for the 
numerical calculation of the singularity in a stress field in the neighbourhood of a singular 
point y,ES. Let S,=iXs, (n=l,. . . , N) be the discrete boundary, let ASP be the boundary 
elements and let 

yx’ = i 5 l$‘ya, i= l,...,m 
n=l k=l 

(3-l) 

be the parametric equation of S,, where Y,$) are the Cartesian (global) coordinates of the grid 
points k E As,, and cp,(~Q are the basis functions of the finite-element method and 7 is the local 
coordinate of the points As,. When the superposition principle described above is used in the 
case of the vector of the specified stresses, a singular stress field (due to the effect of the 
singular point) is superimposed on the regular stress field and the discretization of the 
boundary and boundary-element approximation must also correspond to this principle: a 
subparametric approximation is locally superimposed (in the neighbourhood of the singular 
point) on an isoparametric approximation. Here, one of the rigid points of the isoparametric 
interpolation is made coincident with the singular point and the subparametric interpolation 
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uses multiple grid points in the neighbourhood of the singular point. Hence, the locally 
uncoupled finite element approximation is written in the form 

U AN = UN, 
n=l k=l 

t(NVN) = k;, TNk,y$ (3.2) 

Here, u, is the isoparametric approximation of the displacement vector at the points S,, 
where U,, is the vector of the grid point values at the grid points (k} of the isoparametric 
interpolation, the coupled finite element approximation of the vector t(vA)(u,) is determined 
on the whole of the boundary S,, t(NVN) is the local interpolation of the stress field at the points 
of the “singular” finite element ArN (in the neighbourhood of the singular point), where TNk. is 
the vector of the grid point values of the subparametric interpolation using basis functions w; 
of a higher order than vk, and the set of grid points (k’} includes the multiple gridpoints kl, 
k: in the neighbourhood of the singular point. The element Ass, therefore corresponds to the 
discrete part SO,. Here, a certain analogy with the special elements used in [19] for modelling a 
singularity in the neighbourhood of the crack tip is examined. 

The finite-element approximation (4.2) [9] is an approximation of the solution of the duality 
problem in the case of an approximating Lagrangian L,,(u,, tp), AN) (see (2.1)) which is 
equivalent to a finite-dimensional problem for a boundary functional (BF) F*(u,) which 
approximates problem (1.2). The solution of the above-mentioned problem reduces [9] to the 
solution of a system of discrete boundary equations 

(3.3) 

K’ 

kz, Th'k'c$ = g U,%k l=l,...,K (3.4) 
k=I 

where the coefficients a:,, f$, ~1~ are determined [8] as contributions from adjacent elements 
As,, for which a grid point k is common. 

It is obvious that the structure of Eqs (3.3) and (3.4) corresponds to the structure of Eqs 
(2.2) and (2.3) in the approximations (2.4). The algorithm for solving Eqs (3.3) and (3.4) also 
corresponds to that which has been considered above: a “global” system of discrete boundary 
equations is solved with respect to (U,,,),=,, ,R, (K, is the number of gridpoints of the 
isoparametric approximation of the displacement field at the points S, (see (3.2)). A “local” 
system of discrete boundary equations is subsequently solved for (TNkr]k,=l,, ,K, (K’ is the 
number of grid points of the subparametric interpolation of the stressfield at the points 

50, = S,). 
The solvability of the “global” system follows from what has been said above (Section 2) 

when the conditions (see (2.5)) 

j iiNdG, = j rot ii,dG, = 0 

GA GA 

are satisfied where IiN is the solution of the discrete variational problem in the domain G, 
with a boundary S, (of the approximating problem (1.2)), constructed using approximations 
of u,, tcVA)(uN) on the boundary in accordance with the VMBE algorithm [S]. 

A known relationship between the number s, of degrees of freedom of the finite elements 
(in terms of the components of the grid point displacements) and the order of the p polynomial 
is used to select the interpolation polynomial for the finite-element approximation of the 
displacement field: s, = X(p+l)(p+ 2) (written here for a two-dimensional element) which 
determines the complete polynomial. The possible number of degrees of freedom s, in terms 
of the components of the grid point stresses must then satisfy the condition s, 3 s, -s,,, where 
sO is the number of degrees of freedom of the finite elements as a rigid whole. 
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A A model planar problem on the stress-strain state of an elastic homogeneous isotropic 
medium with a crack under the action of stresses @) = -(t,, m(U) = -7*, which are uniformly 
distributed over the contour of the crack and give rise to a normal separation [cleavage] and 
transverse shear deformations, has been considered. A formulation of this problem is given in 
[19]. The numerical-analytic algorithm described above for modelling the singularity in the 
stress field in the neighbourhood of the crack tip (see (1.1)) was used where gr’ = (-#‘) + 
(-a,)1(*’ and I@) are the direction cosines of the outward normal v to the contour of the crack 
S. In order to solve Eq. (1.2), a linear isoparametric finite-element approximation of the 
displacement field at points of the crack contour was used in which a subparametric approxi- 
mation was superimposed in the neighbourhood of the crack tip at the points of the “singular” 
element ASP. The following versions were used: the grid points of the linear approximation of 
the displacement field were made more dense; a cubic polynomial was used to approximate the 
displacement field in the linear element As,; a locally uncoupled finite-element approximation 
of the form of (3.2) was used, where vk are linear functions and &. are cubic functions. The 
numerical effect was evaluated: for the first two coupled approximations on the whole 
boundary S, using an a posteriori estimate [8], the right-hand side of which can be written in a 
discrete form (using the notation of system (3.3)) 

where QniG = Q,k + T$, Q,,, T,$ are the vectors of the grid-point values of the regular and 
singular components of the stresses specified on the crack contour (see (1.1)) while, in the case 
of the third version of a locally uncoupled approximation, IS, is supplemented by the term (see 
(3.4)) when K = 2, K’ = 2 

For a fixed number N = 12 (on half of the crack contour), refinement of the linear approxi- 
mation (three additional gridpoints were introduced) and the use of a cubic interpolation 
polynomial yielded roughly the equivalent numerical effect: IS. = 0.605; 0.545, while the use of 
the locally uncoupled finite-element approximation yielded a significantly better result 
I S, ̂  0.22. 

Hence, also in the case of an isoparametric finite-element approximation, numerical 
modelhng of a stress singularity in the neighbourhood of a singular point using a singular 
solution is possible but with insufficient accuracy. The accuracy depends on the order of the 
approximation at the additional gridpoints (k’}, that is, on the order of the basis functions vi,. 
However, account should be taken of the fact that an increase in the order does not always lead 
to an increase in the accuracy of the approximation. For instance, it has been noted ([ll, p. 
1421) that, if the solution of an elliptic boundary-value problem is not very smooth, the use of 
inte~olation polynomiaIs of degree p > 4 to approximate it does not improve the accuracy of 
the approximation. 

We shah also apply the numerical-analytic algorithm which has been described for modelling 
singularities in a solution for solving traditional problems in the theory of elasticity with 
singularities of the type of cavities, notches and cusps. In contact problems and problems 
concerning cracks (both planar and spatial), the algorithm enables one to realize a singularity 
in the stress field of the order of r;* since the components of the stress tensor T”” have the 
above-mentioned singularity and the stress field in the neighbourhood of the singular points is 
modelled using these components. Existing algorithms for modehing singularities in problems 
concerning cracks [19] realize a singularity in the stresses of the order of ri” and rO-‘. 

In connection with the comparison which has been made, we shall characterize certain 
complications in the impiementation of the proposed algorithm. Naturally, an algorithm for 
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solving a problem with a singularity is more complex compared with an algorithm for solving a 
regular problem: in the given case, both a refinement of the subdivision in the neighbourhood 
of a singular point into isoparametric elements, as well as the use of a locally subparametric 
interpolation leads to an increase in the order of the system of resolving equations. However, 
the use of a singular element (a Wilson element [19]) also leads to an increase in the number of 
degrees of freedom and, consequently, to an increase in the order of the system of equations. 

A complication, associated with the ill-conditioned form of the matrix of a system, can arise 
in the choice of the size of the neighbourhood of the multiple grid points (see above). The 
recommendations in [13] were used here: the size is 0.05 of the length of an element AsN. The 
above-mentioned fact also has an effect on the accuracy with which the stress intensity factor 
can be determined. 
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